3.1.36 \(\int \frac {1}{x^2 (a+b \text {csch}^{-1}(c x))} \, dx\) [36]

Optimal. Leaf size=46 \[ -\frac {c \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {csch}^{-1}(c x)\right )}{b}+\frac {c \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {csch}^{-1}(c x)\right )}{b} \]

[Out]

-c*Chi(a/b+arccsch(c*x))*cosh(a/b)/b+c*Shi(a/b+arccsch(c*x))*sinh(a/b)/b

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 46, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {6421, 3384, 3379, 3382} \begin {gather*} \frac {c \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {csch}^{-1}(c x)\right )}{b}-\frac {c \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {csch}^{-1}(c x)\right )}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(a + b*ArcCsch[c*x])),x]

[Out]

-((c*Cosh[a/b]*CoshIntegral[a/b + ArcCsch[c*x]])/b) + (c*Sinh[a/b]*SinhIntegral[a/b + ArcCsch[c*x]])/b

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 6421

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[-(c^(m + 1))^(-1), Subst[Int[(a + b
*x)^n*Csch[x]^(m + 1)*Coth[x], x], x, ArcCsch[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] &
& (GtQ[n, 0] || LtQ[m, -1])

Rubi steps

\begin {align*} \int \frac {1}{x^2 \left (a+b \text {csch}^{-1}(c x)\right )} \, dx &=-\left (c \text {Subst}\left (\int \frac {\cosh (x)}{a+b x} \, dx,x,\text {csch}^{-1}(c x)\right )\right )\\ &=-\left (\left (c \cosh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\text {csch}^{-1}(c x)\right )\right )+\left (c \sinh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\text {csch}^{-1}(c x)\right )\\ &=-\frac {c \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {csch}^{-1}(c x)\right )}{b}+\frac {c \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {csch}^{-1}(c x)\right )}{b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 44, normalized size = 0.96 \begin {gather*} -\frac {c \left (\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {csch}^{-1}(c x)\right )-\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {csch}^{-1}(c x)\right )\right )}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(a + b*ArcCsch[c*x])),x]

[Out]

-((c*(Cosh[a/b]*CoshIntegral[a/b + ArcCsch[c*x]] - Sinh[a/b]*SinhIntegral[a/b + ArcCsch[c*x]]))/b)

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {1}{x^{2} \left (a +b \,\mathrm {arccsch}\left (c x \right )\right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(a+b*arccsch(c*x)),x)

[Out]

int(1/x^2/(a+b*arccsch(c*x)),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b*arccsch(c*x)),x, algorithm="maxima")

[Out]

integrate(1/((b*arccsch(c*x) + a)*x^2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b*arccsch(c*x)),x, algorithm="fricas")

[Out]

integral(1/(b*x^2*arccsch(c*x) + a*x^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{2} \left (a + b \operatorname {acsch}{\left (c x \right )}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(a+b*acsch(c*x)),x)

[Out]

Integral(1/(x**2*(a + b*acsch(c*x))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b*arccsch(c*x)),x, algorithm="giac")

[Out]

integrate(1/((b*arccsch(c*x) + a)*x^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{x^2\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(a + b*asinh(1/(c*x)))),x)

[Out]

int(1/(x^2*(a + b*asinh(1/(c*x)))), x)

________________________________________________________________________________________